
Abstract

Venture Capital Communities

Syndicates account for two-thirds of the capital invested by venture capital firms. Through

syndications, venture capitalists form several non-exclusive, partially overlapping partner-

ships with other VC firms. We study the structure of these inter-VC alliances. We show that

the repeated partnerships leads to agglomeration of VC firms into “communities” or soft-

border conglomerates whose members are probabilistically more likely to partner with each

other than with outsiders. We characterize the number and composition of communities and

their economic e↵ects. Communities exhibit subtle composition e↵ects with heterogeneity

on the dimensions of size, influence, and geography but homogeneity in industry and stage

focus. These e↵ects are consistent with resource complementarity theories of organizational

boundaries as well as theories in which syndicate members rely on and value each other for

evaluation, screening, and risk-sharing. Community membership is associated with positive

economic outcomes for portfolio firms. Firms sourcing capital from community VCs are more

likely to exit and do so sooner. Our results are consistent with models in which VCs learn by

doing and the e↵ectiveness of learning depends on the nature of a VC’s syndicate partners.
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1 Introduction

Venture capital (VC) firms are financial intermediaries that provide capital to young en-

trepreneurial firms. They raise capital from wealthy individuals or institutional investors

such as pension funds and university endowments to invest in young and risky ventures with

high upside. The VC industry has grown significantly since the first limited partnership

was formed in 1958. According to the National Venture Capital Association, there are over

56,000 VC cash-for-equity deals for $429 billion in the U.S. between 1995 and 2009. Venture

capital has spawned successful firms such as Apple Computers, Cisco, and Microsoft.

Gompers and Lerner (2001, 2004) classify venture capital activities into three phases of

the “venture cycle.” These phases comprise fund-raising by VC firms, investment in portfolio

companies, and exit. We focus on the second stage of the cycle, the VC investment process.

VC firms tend to invest in young firms with few tangible assets and unproven business

models, making the investments highly risky. VC investments are also resource intensive.

As Gompers and Lerner (2004) write, a venture capitalist will often conduct more than

100 reference checks prior to investing. After investing, VCs serve on the boards of their

portfolio companies, conduct site visits to monitor performance, provide advice on growth

strategies, help recruit key personnel, professionalize the firms or find strategic partners.

Thus, VC investments are risky and resource intensive, demanding considerable e↵orts both

in ex-ante screening and ex-post investment e↵ort in providing strategic direction to portfolio

companies.1

VC firms use several strategies to manage the risks and resource demands placed by the

investment process. For instance, VC contracts routinely include security design features

1See Lerner (1995) for directorships, Bygrave and Timmons (1992) or Gorman and Sahlman (1989) for
advising, Hellmann and Puri (2002) for professionalization, and Lindsey (2008) for strategic partnering roles
of VC firms. Casamatta (2003) models the dual advising-financing function.
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such as priority and staging or covenants to mitigate potential agency or holdup problems.2

An important element of a venture capitalist’s strategy is syndication, or co-investing in

portfolio firms together with other VC firms. Syndicated deals comprise a significant portion

of VC financing. For instance, in the U.S. venture capital market, syndicated rounds account

for 44% of the rounds financed and 66% of VC investment proceeds.3 Syndication is also

important when viewed from the VC firm’s perspective. For instance, in the time period

between 1980 and 1999, only 5% of U.S. VC firms never syndicate and these are small,

peripheral players. 95% of VCs enter into at least one syndicate and often do so with

multiple non-overlapping partners.

A syndicated round can be viewed as a collaborative e↵ort between the venture capitalists

who finance the round. These collaborations are not exclusive, so VC firms that join together

in one syndicate are not bound to work together in future deals. In fact, top venture

capitalists can enter into syndicate partnerships with hundreds of VC firms and many venture

capitalists enter into and manage multiple syndications at the same time. These patterns

suggest that structure of alliances formed by venture capitalists, with multiple relationships

with several partners at the same time, is likely more complex than suggested by static

models of contracting between two parties.

We examine the structure of the partnerships formed by venture capitalists through the

syndication process. We show that VC firms do not choose syndicate partners at random.

Rather, they tend to prefer some syndicate partners over others, resulting in agglomeration

of VC firms into spatial clusters that we term as VC communities. We examine community

formation in the VC industry and ask three interrelated questions. First, is there evidence

2See Neher (1999) or Cornelli and Yosha (2003) on security design and Kaplan and Stromberg (2003,
2004), Robinson and Stuart (2007) or Robinson and Sensoy (2011) for evidence on VC contracts.

3For evidence in non-US markets, see Lockett and Wright (2001), Brander, Amit, and Antweiler (2002),
or Hopp and Rieder (2010).
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of community formation? Second, what is their composition? In particular, is there het-

erogeneity, in the sense that VCs with diverse skills and resources form alliances with each

other? Alternatively, is there homophily so that VCs with similar skill sets partner with

each other, consistent with the view that VCs with similar functional capabilities rely on

each other to screen and certify investments? Finally, is sourcing capital from a community

VC beneficial for a portfolio company seeking venture capital?

Briefly, we find extensive and robust evidence of community formation in a sample span-

ning 20 years of VC syndication data. Communities exhibit subtle composition e↵ects with

both homogeneity and heterogeneity on di↵erent dimensions, as we explain later. Finally,

portfolio firms sourcing capital from community VCs are more likely to exit and do so faster.

The findings echo the view of the recent literature on strategic alliances between firms (e.g.,

Robinson and Stuart, 2007; Robinson, 2008). As the literature emphasizes, strategic al-

liances involve simultaneous, multilateral relationships that likely go beyond simple models

of two-party bilateral contracting. We provide empirical evidence of such e↵ects. While our

results support the resource complementarity view of strategic alliance formation, they are

also consistent with models such as Sorensen (2008) in which (VC) firms learn by doing and

the e↵ectiveness of learning depends on the nature of the firm’s alliance partners.

Before discussing our methods and results, we briefly review examples of VC partnerships

and consider the economic forces that motivate community formation. The propensity to

prefer some partners over others is illustrated by the partnerships of J. P. Morgan Ventures.

Between 1980 and 1999, J. P. Morgan Ventures co-invests with 640 di↵erent venture capital

firms. Figure 1 displays the frequency distribution of J. P. Morgan’s partners. The distri-

bution has thick left mass, indicating that some partners are preferred over others. The

distribution also has a long and thin right tail, indicating that the list of J. P. Morgan’s
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syndicate partners is extensive. Figure 2 plots the distribution of the top 20 partners for

J. P. Morgan Partners, Matrix Partners, Sequoia Capital, and Kleiner Perkins. over the

1980-1999 period. The patterns are similar to those in Figure 1.

While not displayed in Figures 1 and 2, we also find that di↵erent VC firms can have

di↵erent – but not necessarily mutually exclusive – preferred partners. For instance, the

top 5 partners of J. P. Morgan are Kleiner Perkins, Oak Investment Partners, J. F. Shea,

Bay Partners, and Mayfield Fund. The top 5 partners for Kleiner Perkins are Mayfield

Fund, J. P. Morgan, Institutional Venture Partners, New Enterprise Associates and Sequoia

Capital. Thus, community formation is a probabilistic rather than a deterministic propensity

to prefer some partners, so community VCs can syndicate outside their native communities.

For instance J. P. Morgan prefers some partners but enters into syndicates with several

others. The existence, the nature, and the economic consequences of community formation

in the overall VC sample are the questions we pursue here.

As economic motivation, we consider why venture capitalists may self-organize into com-

munities. Success in venture capital demands skills in selecting good investments and skills

in maturing the portfolio companies (Sorensen (2007); Das, Jo and Kim (2011)). Some of

the skill set and knowledge to be successful is undoubtedly endowed. However, the existing

stock of skills and knowledge must be renewed or refined and new skills learnt because the

businesses funded by VC capital tend to be immature and have unproven business models.

For the same reason, much of the learning in the VC business is hands-on, through the act

of investing (Goldfarb, Kirsch, and Miller (2007), Sorensen (2008)). Learning improves cur-

rent outcomes and also improves future decision-making, as the VC firm can better identify,

evaluate, and develop future opportunities in related sectors. VC community formation is

consistent with the joint hypothesis that venture capitalists learn through investing with
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their syndicate partners and that learning is enhanced when syndicate partners are familiar.

The learning hypotheses for community formation has two elements. One, venture capi-

talists learn from their syndicate partners, and two, that syndication with familiar partners

enhances learning. Some part of a venture capitalist’s learning comes from its own screen-

ing and ongoing involvement with a portfolio company. However, syndicate partners also

contribute to skill development. The partners conduct their own screening prior to invest-

ment. As Gompers and Lerner (2004) write, venture capitalists will often not invest unless

acceptable syndicate partners agree that the project is desirable. Syndicate partners also

participate in the ongoing evaluation and monitoring of an investment ex-post. The ex-

ante and ex-post activities of partners generate valuable informational signals that a venture

capitalist can learn from.

A second element of the learning hypothesis is that syndication with familiar partners

can enhance the usefulness of the information flows from partners. Familiarity can matter

because it facilitates flow of informal knowledge due to better understanding of partners’

norms and processes (Gertler (1995); Porter (2000)). Sociologists emphasize a similar point.

For example, in an influential article, Granovetter (1985) points out that agents place far

greater confidence in information flows from trusted sources than from unfamiliar ones. Thus,

venture capitalists are more likely to place faith in – and benefit from – the assessments of

syndicate partners when the partners are familiar. Familiarity can arise temporally from

a venture capitalist’s past dealings with the potential partner. It can also arise spatially

from second-hand knowledge when the potential partner has transacted with a VC’s net-

work of former partners.4 The general point, as Centola (2010) writes, is that clustering is

advantageous when social reinforcement matters.

4For example, the VC firm Matrix Partners writes on its website “... The best way to get
in touch with our team is through an introduction from someone you know in our network.”
http://matrixpartners.com/site/about partnering-with-matrix, accessed May 3, 2011.
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The formation of communities is also an implication of incomplete contracting theories.

Venture capitalists operate in environments of high information asymmetry not only about

their portfolio companies but also about potential syndicate partners and what they bring to

the table. The suspicion that potential partners may free ride or ex-post hold up a venture

can cause VC firms to underinvest e↵ort in their syndicated investments (Grossman and

Hart (1986); Hart and Moore (1990)). Familiarity can mitigate these problems through

multiple channels. First, it can diminish the scale of the incomplete contracting problems

because familiar partners face less asymmetric information about each other. Alternatively

or additionally, familiarity can build trust, which leads to equilibrium strategies in which

agents treat partners better and reciprocally expect (and receive) better treatment (Guiso,

Sapienza, and Zingales (2004); Bottazzi, Da Rin and Hellmann (2011)). Similar e↵ects arise

in economic models of reciprocity or models of social interactions where interactions can

result in multiplier e↵ects.5 The bottom line is that if familiarity mitigates the problems

arising out of incomplete contracting, it leads to a greater likelihood of syndication with

familiar partners and thus clustering of venture capitalists into communities.

Besides examining community formation, we also test the performance consequences as-

sociated with community membership. These tests help sort out the alternative perspective

that communities may form but are economically neutral. For instance, VC firms may clus-

ter into communities simply because of a behavioral a�nity for the familiar. Alternatively,

VC firms may choose familiar partners to lower routine administrative and paperwork costs.

To sort out these less material reasons for community formation from deeper motivations

such as learning, we examine the ex-post performance of community VC funded ventures.

Our main sample comprises 39,725 unique VC investment rounds made in the U.S. be-

5See Granovetter (1985) and Glaeser, Sacerdote and Scheinkman (1996) for a discussion of the economic
e↵ects of social interactions. See Rabin (1993) and Fehr and Schmidt (2005) for reciprocity in economics
and Cai (2010) for reciprocity in loan syndications.
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tween 1980 and 1999 in 15,455 portfolio firms. This sample begins after the Employee

Retirement Income Security Act, which led to the institutionalization of the VC market.

The sample ends in 1999, which allows su�cient time periods for judging the performance

of the VC-funded portfolio firms. We identify VC communities based on rolling windows of

5 years between years t � 5 and t � 1 and use this information to analyze the performance

of VC investments made in year t.

From a computational perspective, identifying communities is essentially a clustering

problem, although a computationally di�cult one to accommodate the real world features of

VC data. The number of community clusters is neither known nor fixed across time periods.

Nor do we constrain the size of each community. In fact, each community can comprise a

di↵erent number of VC firms. Moreover, community boundaries are fuzzy as community

VC firms also syndicate outside the community. We employ the technique of modularity

optimization, which e↵ectively partitions VC firms into groups such that the groups are

tight knit internally but have looser connections outside and use the fast walk-trap method

suggested by Pons and Latapy (2005), to optimize modularity.

We detect several communities in every five year sub-period in our sample. The number

of communities varies from 12 to 35 in the individual five-year periods. Thus, like Lindsey

(2008), we too find a “blurred boundary” e↵ect. Her study explains how venture capitalists

can blur boundaries between portfolio firms. Here, communities blur boundaries between

venture capitalists. We find remarkable persistence among community VCs. About 75 per-

cent of community VCs continue to be part of a community after five years. We examine

whether sourcing funds from community VCs is beneficial to the company receiving the fund-

ing. We follow the VC literature (e.g., Brander, Amit and Antweiler (2002); Lindsey (2008);

Sorensen (2008)) and define success as exit either by an IPO or by merger with another
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company. Community membership is significant in probit models predicting 10-year exits or

in Cox hazard models modeling the time to exit.

Our results are robust to a broad set of controls. These include measures of VC firm

influence used in the literature such as VC age, centrality, industry and year fixed e↵ects,

geographical clustering of portfolio companies and VC firms, ownership type of VC firms

and their stage and industry focus. In particular, our results are also robust to controls for

whether a deal is syndicated or not. The fact that syndicated deals are more successful is well

known.6 We too find a syndication e↵ect. Our main point, however, is that the structure and

composition of syndicates also matters beyond just the syndication of the deal. Specifically,

syndicates that include community VCs perform better. The broader point made by these

results is that while syndication itself matters, the interactions it gives rise to also have

incremental performance e↵ects.

The final part of our paper examines the composition of VC communities. Here, we ask

what type of VC firms join together into communities. We consider two views of community

formation. At one end of the spectrum is the view that communities are formed to aggregate

heterogeneous skills, e↵ectively o↵ering a one-stop shop to cater to a wide range of needs

of young startups. Under this view, communities may be conglomerates in disguise, with

soft borders in lieu of rigid organizational lines. The alternative “specialization” viewpoint

suggests that venture capitalists with similar functional capabilities form communities. This

could arise because of a well-known behavioral propensity for homophily (McPherson, Smith-

Lovin and Cook (2001)) or because similarity may reinforce the e↵ect of familiarity in

social interactions. We let the data speak to the two possibilities by comparing the within-

community variation in characteristics relative to within-community variation for the same

6See Brander, Amit and Antweiler (2002), Lerner (1994), Cestone, Lerner and White (2006), Sorensen
(2007) and Das, Jo and Kim (2011).
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characteristics for randomly formed communities.

We find some support for the soft conglomerate perspective. There is similarity among

VCs within a community on the dimension of focus, suggesting that focused firms tend

to syndicate together. This finding suggests that community members learn more from

syndicate partners with concentrated expertise. On dimensions such as VC influence, assets

under management, and portfolio company location, communities are heterogeneous. The

latter findings suggest that VCs syndicate to extend their geographical reach and access deal

flow available from small partners. The results suggest a nuanced view of the “birds of a

feather flock together” e↵ect of McPherson, Smith-Lovin and Cook (2001). Community

members exhibit commonality in some though not all dimensions. The results appear to

be more consistent with economic forces rather than passive behavioral propinquity towards

the familiar driving the selection of VC partners.

The rest of the paper is organized as follows. In the next section, we describe the prob-

lem of community detection, our computational approach, and its relation to the broader

literature in networks. Section 3 discusses the VC data. Section 4 presents several results on

performance and community composition. This section detects and describes communities,

a�rms that syndicated investments perform better, shows that investments by community

VCs perform better than non-community investments, even after allowing for syndication

and other control variables. Communities are also characterized as being based on similarity

in some dimensions and variety in others. Section 5 concludes.
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2 Communities and Community Detection

2.1 Communities

The idea of community formation may be motivated by the observation that many natu-

rally occurring complex systems actually comprise coherent subsystems (“communities”) of

densely connected members who interact for a functional purpose. In early work, Simon

(1962) argues that community structures describe many systems in the behavioral sciences.

However, research now establishes that Simon’s description is apt in many other disciplines.

Community detection and analysis is a thriving multidisciplinary area of research. One

stream of research focuses on improving computational techniques for community detection.

Another applies community detection to characterize and understand physical, biological,

and social phenomena. The goal is to uncover community structures embedded in larger

groups and use them to understand the functional forces underlying the larger entities.

An important application of community detection is in uncovering and understanding

functional biological modules. Examples include metabolic networks of cellular organisms

(Ravasz et al (2002); Duch and Arenas (2005)), and protein-protein interactions to identify

protein complexes that propagate or perform specific functions (Guimera and Amaral (2005);

Gao, Sun, and Song (2009); Lewis et al (2010)). Recent work in brain imaging has also

uncovered community structures in the human brain. Inter-community connections appear

to weaken in older people. These insights can help better understand age-related changes

in brain functioning (Wu et al (2011)). In biology, community detection has been used to

examine the compartmentalization of food chain webs. Understanding these structures gives

insights on the stability and robustness of ecosystems when unanticipated shocks endanger

species (Dunne (2006); Girvan and Newman (2002)).
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In political science, community detection is used to uncover political preferences from

voting patterns. Community structures reveal that political preferences can transcend tradi-

tional party lines (Porter et al (2007)). In an interesting experiment, Zachary (1977) records

ex-ante social interactions between individuals in a karate club. He reports that the ex-ante

interactions strongly predict ex-post community formation. The evidence on bottlenose dol-

phins in Lusseau (2003) suggests that communities are an evolutionary mechanism against

isolation that can occur when a member is subject to random attack.7 Other research on com-

munity structures includes mobile phone and online networks (Porter, Onnela, and Mucha

(2009)), air transportation networks (Guimera et al (2005)), word adjacency in linguistics

and cognitive sciences (Newman (2006)), and collaborations between scientists (Newman

(2001); Duch and Arenas (2005)).

Fortunato (2009) presents a relatively recent and thorough survey of the community

detection literature and its open challenges. Fortunato points out that the literature has

progressed on the computational issues to the point where many methods yield similar

results in practice. However, in his view, there are fewer insights on the functional roles of

communities or their quantitative e↵ect on outcomes of interest. Fortunato suggests that

this is a key challenge in the literature.8 It is also an area in which we o↵er progress, at least

in the setting of venture capital. We detect communities and tie community formation to

functional economic e↵ects, VC exits via mergers or IPOs.9

7The lines demarcating communities in both Zachary (1977) and Lusseau (2003) are sharp and the commu-
nity structures are well motivated. Thus, their datasets are now the standards for benchmarking the quality
of community detection algorithms. For additional datasets, see Mark Newman’s website http://www-
personal.umich.edu/ mejn/netdata/. For an analysis of word clusters in product descriptions, see Hoberg
and Phillips (2010).

8As Fortunato concludes “... What shall we do with communities? What can they tell us about a
system?” He writes that “... This is the main question beneath the whole endeavor.”

9In our study, communities organize to improve investment outcomes for firms, and by extension, for
themselves. This is what one might expect of economically motivated agents. In living organisms, di↵erent
community modules may serve di↵erent functional purposes.
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2.2 Community Detection Algorithms

Detecting VC communities usually begins with a network graph of ties between VC firms.

The network graph is represented by an adjacency matrix A, with the VCs on the rows and

columns. In our setting, an element A(i, j) of the matrix A represents the numbers of rounds

that two VCs i and j finance together in a joint syndicate. Thus, A is a weighted matrix

such that more intense transactional partnerships lead to greater weights.

The diagonal element of the adjacency matrix is zero. While this is standard in the

networks literature, the assumption has an economic basis and meaning. The underlying

economic assumption is that venture capitalists get no benefit of learning from community

partners when they deal with themselves. We model relationships between VCs as being

symmetric. The economic argument is that benefits flow to all members of a syndicate, for

instance because all VC syndicate members learn from financing a portfolio firm. Thus, we

model a weighted adjacency matrix that is symmetric about the main diagonal. This is an

undirected graph.

The final output of the community detection techniques is a partition that identifies

what community each VC firm belongs to. Some firms may not belong to any community.

To assess the overall quality of the partition that generates communities, we compute a

modularity score Q for the partition (see, e.g., Newman (2006)):

Q =
1

2m

X

i,j

"

Aij �
di ⇥ dj

2m

#

· �(i, j) (1)

In equation (1), Aij is the (i, j)-th entry in the adjacency matrix, i.e., the number of syndicate

transactions in which VC firm i and j jointly participated, di =
P

j Aij is the total number of

rounds that VC firm i participated in with other VCs (or, the degree of i) and m = 1
2

P
ij Aij
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is the sum of all edge weights in matrix A. The function �(i, j) is Kronecker’s delta. It takes

the value of 1.0 if the nodes i and j are from the same community, and is zero otherwise.

In equation (1), modularity Q takes values from �1 to +1. When Q > 0 it means that the

number of connections within communities exceeds that between communities.

Appendix A gives a simple example for which we compute Q. While modularity opti-

mization is the most popular technique in recent applications (Fortunato (2009)), it su↵ers

from known drawbacks. For instance, Fortunato and Barthelemy (2007) show that it cannot

identify tiny communities. We require a minimum community size of three members. We

also require that the diameter of a community from end-to-end not exceed one-fourth that

of the entire network. As it turns out this constraint was never binding for our data set.

The computational algorithm to pick the best partition is far from straightforward. As

Fortunato (2009) discusses (see his Section III), community detection is an NP-hard prob-

lem for which there are no known exact solutions beyond very small systems. For large scale

datasets, community detection algorithms are of three types. Graph partitioning places VC

firms into groups of equal size, such that the number of connections between communities

is minimized. We do not use this approach as there is no economic reason to believe that

VC communities should have equal size. Partitional Clustering presets the number of com-

munities and minimizes a loss function to detect them. We do not use this approach as we

do not have a reasonable economic basis to presuppose an arbitrary number of communities.

Hierarchical Clustering, our approach, starts with a few large communities and breaks these

down into smaller ones based on the density of connections within and outside groups.

The ideas in these broad classes of algorithms have been relaxed, extended, and imple-

mented in many di↵erent ways. Leskovec, Kang and Mahoney (2010) compare several of

them. Community detection algorithms can also be classified into “agglomerative” and “di-
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visive.” The divisive class of community detection algorithms is a top-down approach. It

starts by assuming the entire graph is one community. It then breaks down the graph into

smaller units. An example of such an algorithm is the “fast-greedy” algorithm of Girvan

and Newman (2002). Divisive algorithms have a tendency to produce communities that are

often too large especially when there is not an extremely strong community structure.

Agglomerative algorithms, like the “walktrap” algorithm we use, begin by assuming all

nodes are separate communities. Nodes are then collected into communities that form a

partition on the graph. This is a bottom-up approach that builds larger communities from

smaller ones. Among the quickest algorithms of this nature are dynamic methods based on

random walks. The essential intuition of these algorithms is that if a random walk enters a

strong community, it is likely to spend a long time inside it before finding a way out. Setting

the maximal number of steps in the random walk is necessary to implement the algorithm

(Pons and Latapy (2005)).

2.3 Community Detection and Social Network Analysis

Community analysis is part of a growing literature on the role of social connections in eco-

nomics and finance that extends pairwise relationships to higher-level group structure. One

strand of this literature focuses only on the pairwise connections between individuals arising

out of common educational alma mater or employers, often exploiting the Boardex database.

Cohen, Frazzini, and Malloy (2008a, 2008b) show that such educational connections result

in economically valuable information flows, a point also made by Shue (2011). Hwang and

Kim (2009) show that pairwise employment connections between boards and CEOs a↵ect

CEO compensation, while Ishii and Xuan (2009) study how employment connections impact

M&A activity.
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Other studies examine the entire “social network” constructed out of the pairwise con-

nections. The essential idea of these papers is that agents can derive economic benefits not

only from their direct connections but also indirectly through the connections of the agents

they are connected to. Thus, the literature focuses on the aggregate connectedness or the

“rolodex” of an individual. Hochberg, Ljungqvist and Lu (2007) find that portfolio firms with

more central VC investors are more likely to successfully exit via IPO or merger. Engelberg,

Gao and Parsons (2000) find that CEO centrality is related to total compensation.

While we include and control for centrality, we emphasize that the community metric has

a rather di↵erent flavor and economic motivation. Centrality is a construct for the aggregate

influence of an individual in a network. Influence comes from having many connections, or

(recursively) being connected to particularly well connected individuals, or possessing par-

ticularly critical connections. These connections often arise out of the individual’s personal

skill or resources. Community membership, on the other hand, is a group attribute that is

motivated by the role of interactions. Neither is a subset of the other.

Communities are also di↵erent from a construct called “clique.” A clique is a subset of

nodes in a network that are all connected to each other or within a given distance from each

other (called an n-clan or n-clique) but no node outside the clique is connected to all nodes

inside the clique.10 Cliques are self-contained and self-referential clusters. Thus, it is too

restrictive to apply to the VC context, where boundaries are soft and alliances are proba-

bilistic propensities. Clique formation can be detrimental because lack of interaction across

cliques impedes information flows. In the VC setting, interaction across communities may

be discouraged for competitive reasons, yet to some extent may be beneficial as information

exchange leads to better decisions by communities.

10Sub-graphs of diameter n are also known as n-clubs. See the definitions in Mokken (1979).
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3 Data

We use venture-backed investment rounds’ data obtained from Thomson Financial’s Venture

Economics database. Recent studies using the data include Kaplan and Schoar (2005) and

Lindsey (2008). We analyze VC investments made from 1980 to 1999. We start in 1980,

around the time the VC industry started growing rapidly (see, e.g, Figure 1 in Gompers

and Lerner, 2001). Our dataset ends in 1999 to allow at least 10 years from investment to

outcome. We drop the cases in which the database does not disclose a VC firm name, or lists

the VC firm as an angel, individual or management. We only consider domestic investments

by U.S.-based VC funds in non-buyout deals.

We sample IPO firms using data from Thomson Financial’s SDC Platinum. We match

companies by their cusip identifiers, cross-check the matches against actual names, and

further hand-match the names with those in the Venture Economics database. 1,470 ventures

in our sample exited via IPOs. We also obtain M&A data from Thomson Financial’s SDC

Mergers and Acquisitions database. We conduct similar hand-matching of portfolio company

names in the Venture Economics database. We find that there are 3,545 exits via mergers

in our sample.

Table 1 gives descriptive statistics for our sample at the level of an individual venture

capitalist. There are a total of 1,962 unique VC firms in the sample period. On average,

a VC firm invests $595 million (median = $110 million) in about 22 portfolio firms and 48

rounds. The average investment money raised per round is $19.47 million (median = $10.56

million). The total funds raised by a VC amount to about $128 million. Three in every four

deals of an average venture capitalist are syndicated. One-third of each VC firm’s deals are

for early stage firms. The mean age of each VC at the time of its last investment in our

sample is a little less than 10 years. There are 127 Metropolitan Statistical Areas (MSAs)
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covered in our data set. There are 14 VC firms per MSA on average.

4 Results

4.1 Community Detection

We use rolling 5-year windows to identify communities. Thus, the first community is based

on VC investments from 1980 to 1984, the second community is based on 1981-1985 invest-

ments, and so on. We choose a window length of 5 years for community detection. This

is a compromise between allowing a long time period to permit community formation and

detecting it, and using excessively long periods that may contain stale information.

The community detection algorithm identifies a large number of communities, varying

from a minimum of 12 in 1987-91 to a maximum of 35 communities in 1995-99. In each

window, several VC firms do not belong to communities. Between 81 and 183 VC firms, rep-

resenting about 20% of the VCs active in any time period belong to communities. The median

community has 13 members.11 Figures 3–6 depict communities for four non-overlapping 5-

year windows, viz., 1980–1984, 1985–1989, 1990–1994, and 1995-1999, with members of the

largest three communities shown in di↵erent colors. The upper plots in each figure show

the entire VC network. To present a less cluttered view of the network, the lower figure

plots the largest community embedded within all communities of at least 5 members. We

see that connections within the largest community are much greater than connections across

communities, thereby visually a�rming the definition of a community. In Figure 3 all large

communities are connected to one another, but in Figures 4 and 5 there are satellite commu-

nities that are large but disconnected from all other communities. Figure 6 shows satellite

11We note that the community/non-community status of a VC firm is not fixed for the whole sample
period. A VC firm may be part of a community during one 5-year window but is not necessarily a member
of any community in all subsequent windows.
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communities in the upper plot, but the largest communities are well connected to the rest of

the communities. In the lower plot, all large communities are connected, but a few peripheral

ones at the edge of the network are relatively isolated.

Table 2 shows two sample communities that illustrate community formation. These sam-

ples are drawn from earlier time periods and identify communities in which Stanford Uni-

versity (arbitrarily chosen) was a member. These two communities comprise storied Silicon

Valley VC firms well-known to practitioners. The size and composition of the communities

is not identical from period to period. In one, there are 17 VCs as against 15 in the other.

While the choice of these community examples was driven by Stanford University’s commu-

nity membership, there were two other VCs who were also in both communitites, namely

Sequoia Capital and Mohr Davidow Ventures, two large VC firms. The remaining 26 VCs

belonged in either the first or the second of the two communities.

A VC who belongs in a community with another specific VC need not share its community

membership with the other in the next period. In fact, the VC may or may not be a part of a

community in another period. On average, a VC who is ever in a community continues to be

in a community for 88 percent of the years it is in our sample. Table 3 provides information

on community VCs from each rolling window on their continued community membership in

the next 1, 3 and 5 year rolling windows. Community participation tends to be sticky. An

average of 90 percent of community VCs continue to be part of a community in the next

rolling window. Three out of four community VCs continue to be in a community after 5

years. The results indicate significant stability among VCs who become part of a community.

We next consider stability in the composition of communities. We consider 5-year rolling

windows to allow for su�cient time for communities to evolve and change their composition.

It is not surprising that there is some change in the nature of one’s preferred partners
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over time. For instance, one’s circle of friends today is di↵erent from one 10 years ago.

Quantifying the changes in group composition is, however, non-trivial. A community of

three VCs could stay unchanged in the next rolling window. It could also break up in many

di↵erent ways. Each of the 3 members could go their separate ways, or a pair could be

together in a community the next year but not the third VC. The possible combinations

multiply with the size of the original community.

To quantify community stability, we use the Jaccard index. For any pair of sets, the

Jaccard index is defined as the number of members in the intersection of the two sets divided

by the number of members in the union of the sets. In other words, if A and B are a pair of VC

communities, the Jaccard index for the two is given by J(A, B) = |A\B|
|A[B| . Because members

from each VC community could be spread across multiple communities in the next rolling

window, we also need to measure the overlap between a community in a given period and all

communities in the next window. Let At = A1, A2, ..., Am be the set of m communities at time

t, and Bt+1 = B1, B2, ..., Bn be the set of n communities at time t+1. For each community Ai,

we determine a composite Jaccard measure, JC(Ai, B) = Meanj(J(Ai, Bj)|J(Ai, Bj) > 0)

for all j = 1, 2, ..., n. The value of the measure would depend on the number of communities

in the next period and how the community members are dispersed in the next period. For

instance, if there was one community both in periods t and t+1, and all the period t members

remained in the same community next period, JC = 1.

Table 4 presents results for the composite Jaccard measure, averaged for each community

in each rolling window, when paired with communities in the adjacent rolling window. In

order to determine a benchmark against which to evaluate the stability of communities,

we generate random communities. We mimic the number of communities in each 5-year

rolling window as well as the size of each community in our sample. We determine the
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composite Jaccard measure for these random communities and bootstrap the communities

to generate an empirical distribution of the Jaccard index for random communities. For each

rolling window, the Jaccard measure of our community is greater than that of bootstrapped

communities, at the 1% level of significance. Thus, communities identified in our data are

significantly more stable than would occur by chance.

4.2 Univariate Comparisons

Based on the communities identified over a 5-year window, we analyze the performance of

VC investment in the following year. Given that the first window is 1980-84, our perfor-

mance analysis starts from year 1985. Table 5 describes descriptive statistics for our sample

organized by investment round since 1985. Syndicated rounds have multiple participating

venture capitalists with di↵ering characteristics. For instance, young venture capitalists may

join together with older ones in a round. We use the maximum of the VC-level variables

to construct round-level VC variables. Thus, a corporate VC dummy takes the value 1.0

if at least one VC in a round of financing is a corporate VC, and zero otherwise. Panel A

shows that 15,220 (45%) of the 33,924 investment rounds have at least one community VC

firm. 33% of Round 1 financings have at least one community venture capitalist. 44% of the

subsequent financing rounds are community rounds.

Syndication is common in VC investment. In our sample, 14,897 out of 33,924 rounds

(about 44%) are syndicated and these account for 66% of proceeds. 10,056 out of 14,897 or

67% of syndications are community rounds. Early stage rounds account for about a third of

the sample. 45% of these are community rounds. Close to one-half of the investment rounds

is in the geographical clusters in California or Massachusetts, reflecting a concentration of VC

investments in these states and their representation in VC databases (Kaplan, Sensoy and
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Stromberg (2002)). Community VC-based financing rounds account for about 60% of these

rounds. 3,372 rounds have corporate VC participation and 7,586 rounds have a financial VC

firm. In each case, communities account for 58% of the financing rounds.

Venture Economics classifies VC portfolio firms into 10 industries. We report these data

in Panel B. The software industry with 20% accounts for the largest share of financing

rounds in our sample, followed by medical or health firms, communications and media, and

internet firms. Interestingly, community VC is more likely for the more risky and complex

business models characteristic of software businesses and less likely for consumer product or

industrial businesses. The finding indicates that VC firms rely more on familiar partners in

riskier industries. We control for such variation by incorporating industry fixed e↵ects in the

multivariate analyses.

Panel C in Table 5 describes key characteristics across rounds. There is greater invest-

ment in rounds with a community VC ($48 million) than in rounds with no community VCs

($29 million). Besides higher investment per round, community rounds tend to have more

VC firms than rounds with no community VC. This may reflect the greater representation

of community VC firms in syndicated rounds. However, even within the subsample of syn-

dicated rounds, rounds with a community VC tend to have 4 VCs on average compared to

3 in rounds with no community VC. This pattern holds for early stage rounds and initial

financing rounds.

4.3 Performance

We test whether a portfolio firm sourcing capital from a community VC experiences better ex-

post performance. Following the VC literature (e.g., Lindsey (2008)), our primary measure

of success is exit via merger or IPO. To the extent that a venture’s success represents a signal
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of an investor’s success, exits can also proxy for VC performance.

We lag the community variable relative to the window over which we identify community

to predict performance. For instance, we construct communities based on VC syndication

patterns between 1980 and 1984. We use these data to classify investments in 1985 as

coming from community or non-community VCs. Likewise, the next window for community

construction is 1981 to 1985 and the community classification is applied to VC investments

in 1986. This approach follows the strategy of Hochberg, Ljungqvist, and Lu (2007). As they

discuss, the lag structure results in a conservative structure where past 5-year syndication

patterns predict outcomes over windows of several years into the future.

In terms of performance at the round level, Panel D of Table 5 indicates that 12,604 (or

37%) of financing rounds exit. IPOs account for less than a third of these and about 11%

of rounds financed. In community rounds, 14% exit through IPOs and 29% exit through

mergers compared to 9% and 24% for non-community VC rounds, respectively. We find a

similar pattern when considering exits classified by the number of portfolio companies rather

than number of rounds of financing. 13% of companies sourcing funds from a community VC

firm at least once have IPO exits compared with 7% of companies who never have community

VC financing. As an alternative measure of success, we consider a round to be successful if

a venture raises at least one round of financing subsequently within the next five years. A

higher proportion of all rounds with a community VC were successful (78%) compared to

rounds with no community VC (65%).

4.4 Multivariate Specifications

This section considers two specifications for investing success. Following, e.g., Hellmann and

Puri (2002), we consider the time to exit using a Cox proportional hazards specification.
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Because the Cox model allows a flexible non-parametric baseline hazard, it is a popular

choice for modeling duration. In the Cox model, we report the exponentiated hazards ratio.

A ratio greater than 1.0 for a variable indicates that the variable increases the time to exit,

while a ratio less than 1.0 indicates that the variable lowers the time to exit. Following

Lindsey (2008), we also consider a probit model in which success is defined as an exit either

through an M&A transaction or an IPO within 10 years of the investment round.

4.4.1 Explanatory Variables

Our primary interest is how sourcing funds from a community VC is related to exit. The

key variable of interest is the Community Dummy, which takes value 1.0 if the round has at

least one community VC, and zero otherwise. We include several controls that are suggested

by the recent VC literature (e.g., Lindsey, 2008).

Agency problems and information asymmetry are more likely when portfolio companies

are in the early stages of their life cycle. These problems may adversely a↵ect performance.

Accordingly, we include the variable Early Stage, which takes value of 1.0 if the financing is

in an early stage round, and zero otherwise. The literature in economics suggests that there

is geographical clustering or agglomeration that conveys economic benefits to firms located in

geographic clusters (e.g., Porter (1998); Glaeser (2010)). In the context of venture financing,

well-known geographic clusters are in California (CA) and Massachusetts (MA). We include

a geographic cluster dummy variable that takes the value 1.0 if a portfolio company is located

in either CA or MA, and zero otherwise.

We include controls for the characteristics of venture capital firms participating in a

financing round. In particular, we control for whether a VC in a financing round is a

corporate VC arm or not. Following Hellmann, Lindsey, and Puri (2008), VC arms of
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financial institutions may have systematically di↵erent success rates. Thus, we also control

for financial institution venture capitalists. A long stream of research going back to at least

Lerner (1994) finds that syndication is a key determinant of success. Accordingly, we include

a control for whether a round is syndicated or not.

A number of papers in the VC literature stress the role of VC experience and skill.12

For instance, Kaplan and Schoar (2005) identify the importance of experience in VC fund

performance. Sorensen (2007) points to the greater likelihood of an IPO of a portfolio

company that is funded by a more experienced VC. We control for a VC’s skill in maturing

its portfolio company using IPO Rate, or the rate at which it is able to take its portfolio

companies public.13 Hochberg, Ljungqvist and Lu (2007) find that a VC firm’s connectedness

often subsumes traditional measures of VC experience in explaining performance. Thus, we

include the lead VC’s eigenvalue centrality based on investments from t � 1 through t � 5.

Following Lindsey (2008), we define Experience as the average age of the participating VCs

as of the year before the financing round.14

We consider two more measures of VC experience. Given the particular challenges as-

sociated with early stage financing, a VC with experience in early stage may be considered

to be di↵erent in terms of value and skills than an investor without such experience. Such

di↵erences in investment focus could also a↵ect company performance. We define Early

Stage Focus as the proportion of companies that the participating VCs invested at an early

stage until the year prior to the financing round. Similarly, each industry presents its own

12For a recent review, see Krishnan and Masulis (2011).
13In calculating the IPO rate, we follow Krishnan and Masulis (2011) who find strong evidence that the

number of completed IPOs in a VC’s portfolio over the prior 3 calendar years relative to the number of
companies it actively invested in is a predictor of portfolio company performance.

14Our definition modifies Lindsey’s definition on two fronts. First, we consider age based on the VC firm’s
founding year rather than its entry into Venture Economics. Second, we consider a VC’s experience based
on time periods prior to the financing round in question.
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challenges. Skills and expertise required for a biotechnology company can be di↵erent from

those necessary for investing in a software product company. We define Industry Focus as

the proportion of companies funded by the participating VCs in the same industry as the

portfolio company until the year prior to the financing round.

Finally, as in the context of portfolio companies, there may be benefits of agglomeration for

VC firms too which may impact portfolio company performance. We include a geographical

cluster control for the VCs, which takes the value 1.0 if at least one of the participating

VCs is located in California or Massachusetts, and zero otherwise. All our specifications

include fixed e↵ects for the industry that the portfolio company belongs to and the year of

the financing round.

4.4.2 Estimates

Table 6 reports the Cox and probit estimates. In the Cox model (i.e., specification (1)), we

find that the hazard ratio for the Community Dummy is greater than one, at 1.11, and is

significant at the 1% level. The estimate shows that having a community VC in a financing

round shortens the time to exit by 11%.

Among the controls, both the company-level variables are statistically significant. The

coe�cient for Early Stage is less than one, suggesting that early stage deals may take longer

to mature and exit. Companies in geographical clusters of California and Massachusetts are

likely to exit sooner, perhaps due to improved resource flows and better decision-making

arising out of agglomeration (Porter (1998, 2000); Glaeser (2010)). Ownership of VC firms

matters. In particular, a financing round with at least one corporate VC or financial insti-

tution VC is likely to experience speedier exit.

We find that syndicated ventures tend to exit faster. A VC firms’ reputation for taking
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its companies public, measured by the IPO Rate, is not statistically significant in explaining

speed of exit. As in Hochberg, Ljungqvist, and Lu (2007), we find that a more centrally

networked VC facilitates faster exit, though at the 10% level of significance. VC experience,

in terms of their age at the time of financing, early stage focus or specific industry focus,

is not statistically significant. However, funding from VCs who lie within the California-

Massachusetts cluster facilitates quicker exit for portfolio companies. The important finding

in Table 6 is that VC community is significant even after including these controls.

Specification (2) in Table 6 reports probit estimates that model the probability of exit

within 10 years. Most of the results from the Cox model go through in the probit speci-

fication. One di↵erence is that the IPO rate is significant at the 10% level in the probit

model but not in the hazards model. However, the community variable continues to remain

significant and is associated with a greater likelihood of exit. We also estimate but do not

report univariate specifications with community dummy alone and partial specifications that

include it with subsets of controls. We note that the VC community variable is significant

in these models as well with a similar or higher exponentiated hazards ratio.

4.5 Performance By Round

In this section, we consider follow-on financing as a measure of success. Follow-on rounds of

financing involve reassessment of the portfolio company. New investors are often brought in,

incumbent VCs increase their investment, and both sets of investors have the opportunity

to re-evaluate and reconsider the progress of the portfolio firm. Thus, attracting follow-on

funding can be viewed as an alternative metric of success. Cochrane (2005) suggests that

round-by-round financing data can be used to construct VC performance metrics.

We rely on Venture Economics codes to specify the round number. These data are not
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without noise. In some instances, the first available round of financing available in the

database may not be round number one and round numbers may be missing between rounds.

We take a conservative approach. We only consider those rounds that are identifiably num-

bered and do not have missing data for subsequent rounds when one exists. These criteria

reduce the sample of first three rounds from 22,683 to 22,271 rounds.15

Table 7 shows the round-by-round results with both the Cox and the probit specifications.

Community VC accelerates the progression to a future round of financing in the earlier rounds

(rounds 1 and 2) but not in the later round (round 3). Community VCs appear to matter

less when the firms are more mature in their life cycle.

Among the control variables, the coe�cient on the early stage dummy variable is positive

and statistically significant. One interpretation of this finding is that staged financing is

more prevalent at the early stage firms given the greater informational issues with these

firms (Cornelli and Yosha (2003)). Thus, VC firms manage early stage financing through

more frequent injections of smaller amounts of capital.

Neither a corporate VC nor a financial institution VC helps with subsequent financing

rounds in the initial stages. In fact, financial institution VCs have a negative and significant

e↵ect, perhaps because VC arms of financial firms are structurally di↵erent (Hellmann,

Lindsey and Puri (2008)). As before, syndicated rounds have a higher chance of obtaining

future funding and do so sooner. VCs’ reputation for taking portfolio companies public

(IPO rate) seems to have an adverse e↵ect on subsequent funding after round 2. Eigenvector

centrality is significant in round 1 in the Cox specification at 10% significant level but not in

the probit specification. However, it matters in round 3 under both specifications, suggesting

that centrality and community play complementary roles. Perhaps thick rolodexes are more

15The 412 rounds we lose due to missing sequential round numbers are spread evenly through the sample
period and in both early and non-early stages.
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critical in later stages when it provides firms access to a broader set of resources such as

personnel or strategic contacts.

Portfolio companies located in California or Massachusetts experience a higher likelihood

of next-round financing except in round 2. VC firms belonging to the geographical clusters in

California and Massachusetts have a positive e↵ect in earlier round but not in later rounds.

VC experience, in terms of the participating VCs’ age, does not help and even impedes

progress in initial rounds. Early stage focus is associated with a greater likelihood of and

faster follow-on financing or exit. Thus, firms that declare specialization in early stage

ventures appear to accelerate a firm’s progress to a next round of financing. In each of the

specifications, the industry focus on the participating VCs is statistically insignificant. In

any event, the key result is that community VC remains significant in facilitating follow-on

financing, particularly in the initial rounds.

4.6 Community Composition

Our previous results indicate that venture capitalists form communities with preferred part-

ners. However, they say little about the composition of individual communities, or the types

of partners that they prefer. We address this issue next.

In principle, communities could consist of venture capitalists with similarity or diversity in

attributes. The case for diverse attributes rests on the view that VC investing requires skills

along multiple dimensions to assess investments and to manage them to maturity. Partners

with heterogeneous attributes can extend the skill set of an individual venture capitalist or

expand its investment possibilities. On the flip side, communities could also be homogeneous.

The behavioral literature (e.g., McPherson, Smith-Lovin, and Cook, 2001) suggests that like

tend to a�liate with like. In the VC context, Gompers and Lerner (2004) argue that VC
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firms will often not syndicate unless the investment is vetted by a partner they trust. To the

extent VC firms can better assess other VCs in similar space, VC communities may tend to

be homogeneous. Cestone, Lerner, and White (2006) argue that vetting is most useful to a

VC when the partner is of similar caliber. If syndication manifests the need for validation

by partners, it is plausible that similar types of VC firms form communities, especially when

sorted by VC skill or experience in a relevant sector. Whether heterogeneity or homogeneity

in attributes dominates comes down to an empirical question. Table 8 reports the results.

Panel A in Table 8 reports the average characteristics of VC community members. This

table sheds light on the types of venture capitalists that cluster into communities. The

first column of results reports the mean characteristic for our sample of communities. The

second column reports the mean characteristics for bootstrapped communities. These are

generated by randomly picking a random set of VCs and assigning them to communities,

with the number of communities and their size fixed to the actual number of communities

identified by our algorithm. The third column reports the p-value for the mean characteristics

based on the simulated distribution of the characteristics for the bootstrapped communities.

We find that older, larger, prestigious (with high centrality) VC firms concentrated across

states tend to form communities. Community members tend to be more focused in terms of

industries and location of portfolio companies but not in terms of stage of investment.

Panel B reports the variation in characteristics within the community compared to the

variation for bootstrapped communities. This panel sheds light on the type of communities

formed by venture capitalists. Communities are more concentrated in terms of industry

and stage focus, consistent with the idea that focused firms are more likely to deal with and

learn from each other. On the other hand, communities have greater variation in assets under

management, in VC influence, and diversity in the portfolio company state. These results
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suggest that communities permit VCs to extend their reach in generating new investments.

Our results provide a partial reconciliation of the contradictory findings reported by Du

(2009) and Hochberg, Lindsey, and Westerfield (2011). Du reports that venture capitalists

are more likely to syndicate with partners while Hochberg et al. find that VCs syndicate

with dissimilar partners. Our results suggest a somewhat nuanced view of the homophily

versus diversity debate. We find that syndicate partnerships tend to exhibit commonality

in some dimensions but not others. The results thus reconcile and support contradictory

economic forces: the second opinion hypothesis of Cestone, Lerner, and White (2007) that

pushes similar VC firms to partner together and the resource complementarity view of the

strategic alliance literature in which partnerships incentivize the flow of unique resources

(e.g., Robinson and Stuart, 2007; Robinson, 2008). More generally, the results reinforce the

point made by Harrison and Klein (2007) that diversity is a multidimensional construct that

is not summarized as a single scalar variable. The larger point made by our results is that

characteristics-based similarities seem to be based on economic roots rather than passive

behavioral propinquity for the familiar.

5 Conclusion

Syndication is a pervasive feature of venture capital financing. Over the course of its life,

a venture capital firm is likely to form syndicates several times and do so with di↵erent

partners. However, not all VC firms associate with each other in syndicates. Nor are

the syndicate partnerships formed randomly. Instead, VC firms tend to exhibit associative

properties in which they tend to syndicate more with some partners than with others. This

leads to clusters that we term venture capital communities.

We examine community formation in the venture capital industry and characterize its
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economic consequences. We employ flexible community detection techniques that accom-

modate real world features of the VC market including flexibility in the number, size, and

composition of communities and communities with porous borders. Using 20 years of ven-

ture financing data, we find robust evidence of VC community formation throughout our

sample time period. Communities do not pool heterogeneous venture capitalists into soft

conglomerates but consist of functionally similar VCs. Community VCs are also associated

with positive economic outcomes. Firms that source capital from community VCs are more

likely to experience successful exit, after controlling for other plausible explanatory variables

such as syndication, that also plays an important role. The evidence is most consistent with

the view that collaborations play a key economic role in the VC market, and that, repeated

interactions with familiar partners add further value to venture capitalists and their portfolio

firms.

Our study contributes to the growing literature on social networks in finance and eco-

nomics. Social networks are usually viewed as being important because they endow positions

of influence to central individuals on a network. For instance, a well connected CEO can ben-

efit herself or her firm because more connections provide greater access to network resources.

Our study emphasizes a complementary point: networking is also beneficial because it fa-

cilitates social interactions. These interactions can create value. Interactions can enhance

learning, improve soft information flows, or foster trust and reciprocity, leading to better

economic outcomes. These benefits matter especially in environments of risk, uncertainty,

and asymmetric information that characterize the VC market. The performance e↵ects of

communities can be viewed as a manifestation of the benefits of interactions.

We make two related points on this issue. First, our paper suggests that VC skill is not

entirely endowed. Some part of it is learnt or upgraded through the syndication process,
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as suggested by Sorensen (2008). Second, the VC literature has long emphasized that syn-

dication is a critical determinant of investment outcome. While we confirm this finding,

our additional point is that the structure and composition of syndicates also matter. More

broadly, syndication has benefits beyond its value for a specific deal or a firm. Syndication

also gives rise to interactions that can benefit future investments by syndicate members.

While our study focuses on community formation in venture capital, it is also interesting

to examine community formation in other contexts. For example, repeated collaborations can

create communities in other areas such as syndication in investment banking, underwriting,

or lending. An interesting question is whether communities in these other areas are associ-

ated with better economic outcomes or whether they are motivated by economically neutral

behavioral preferences for the familiar or transaction cost motives to lower administrative

or operational costs. More generally, it is interesting to understand whether community

formation arising out of evolutionary processes in biology and the natural sciences are also

mimicked in settings where agents interact for economic benefits.
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A Calculating Modularity

In order to o↵er the reader a better sense of how modularity is computed in di↵erent settings,

we provide a simple example here, and discuss the di↵erent interpretations of modularity

that are possible. The calculations here are based on the measure developed in Newman

(2006). Since we used the igraph package in R, we will present the code that may be used

with the package to compute modularity.

Consider a network of five nodes {A, B, C, D, E}, where the edge weights are as follows:

A : B = 6, A : C = 5, B : C = 2, C : D = 2, and D : E = 10. Assume that a community

detection algorithm assigns {A, B, C} to one community and {D, E} to another, i.e., only

two communities. The adjacency matrix for this graph is

{Aij} =

2

6666664

0 6 5 0 0
6 0 2 0 0
5 2 0 2 0
0 0 2 0 10
0 0 0 10 0

3

7777775

The Kronecker delta matrix that delineates the communities will be

{�ij} =

2

6666664

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

3

7777775

The modularity score is

Q =
1

2m

X

i,j

"

Aij �
di ⇥ dj

2m

#

· �ij (2)

where m = 1
2

P
ij Aij = 1

2

P
i di is the sum of edge weights in the graph, Aij is the (i, j)-

th entry in the adjacency matrix, i.e., the weight of the edge between nodes i and j, and

di =
P

j Aij is the degree of node i. The function �ij is Kronecker’s delta and takes value

1 when the nodes i and j are from the same community, else takes value zero. The core of

the formula comprises the modularity matrix
h
Aij � di⇥dj

2m

i
which gives a score that increases

when the number of connections within a community exceeds the expected proportion of

connections if they are assigned at random depending on the degree of each node. The

score takes a value ranging from �1 to +1 as it is normalized by dividing by 2m. When
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Q > 0 it means that the number of connections within communities exceeds that between

communities. The program code that takes in the adjacency matrix and delta matrix is as

follows:

#MODULARITY

Amodularity = function(A,delta) {

n = length(A[1,])

d = matrix(0,n,1)

for (j in 1:n) { d[j] = sum(A[j,]) }

m = 0.5*sum(d)

Q = 0

for (i in 1:n) {

for (j in 1:n) {

Q = Q + (A[i,j] - d[i]*d[j]/(2*m))*delta[i,j]

}

}

Q = Q/(2*m)

}

We use the R programming language to compute modularity using a canned function,

and we will show that we get the same result as the formula provided in the function above.

First, we enter the two matrices and then call the function shown above:

> A = matrix(c(0,6,5,0,0,6,0,2,0,0,5,2,0,2,0,0,0,2,0,10,0,0,0,10,0),5,5)

> delta = matrix(c(1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,1,1),5,5)

> print(Amodularity(A,delta))

[1] 0.4128

We now repeat the same analysis using the R package. Our exposition here will also show

how the walktrap algorithm is used to detect communities, and then using these communities,

how modularity is computed. Our first step is to convert the adjacency matrix into a graph

for use by the community detection algorithm.

> g = graph.adjacency(A,mode="undirected",weighted=TRUE,diag=FALSE)

We then pass this graph to the walktrap algorithm:

> wtc=walktrap.community(g,modularity=TRUE,weights=E(g)$weight)

> res=community.to.membership(g,wtc$merges,steps=3)
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> print(res)

$membership

[1] 0 0 0 1 1

$csize

[1] 3 2

We see that the algorithm has assigned the first three nodes to one community and the

next two to another (look at the membership variable above). The sizes of the communities

are shown in the size variable above. We now proceed to compute the modularity

> print(modularity(g,res$membership,weights=E(g)$weight))

[1] 0.4128

This confirms the value we obtained from the calculation using our implementation of the

formula.

Modularity can also be computed using a graph where edge weights are unweighted. In

this case, we have the following adjacency matrix

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 1 0 0

[2,] 1 0 1 0 0

[3,] 1 1 0 1 0

[4,] 0 0 1 0 1

[5,] 0 0 0 1 0

Using our function, we get

> print(Amodularity(A,delta))

[1] 0.22

We can generate the same result using R:

> g = graph.adjacency(A,mode="undirected",diag=FALSE)

> wtc = walktrap.community(g)

> res=community.to.membership(g,wtc$merges,steps=3)

> print(res)

$membership
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[1] 1 1 1 0 0

$csize

[1] 2 3

> print(modularity(g,res$membership))

[1] 0.22

A final variation on these modularity calculations is to use a Kronecker delta matrix that

has diagonal elements of zero. In the paper we use the first approach presented in this

Appendix.
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B Variable Definitions

Variable Description

Dummy Variables
Community Equals 1.0 if there is at least one community VC in the fi-

nancing round and zero otherwise
Early Stage Equals 1.0 if the round is an early stage financing and zero

otherwise.
Company Geographical
Cluster

Equals 1.0 if the portfolio company funded by the VC is in
the state of California or Massachusetts and zero otherwise.

Corporate VC Equals 1.0 if there is at least one venture capitalist who is
the corporate VC arm of a firm.

FI VC Equals 1.0 if there is at least one financial institution VC in
the round

Syndicated Equals 1.0 if the round is syndicated, zero otherwise
VC Geographical Cluster Equals 1.0 if at least one participating VC is in the state of

CA or MA
Other Variables
IPO Rate natural log of one plus the average of each participating VC’s

ratio of IPOs to number of portfolio companies in the last
three years prior to the financing round

Centrality lead VC’s eigenvector centrality, normalized for the sample
in each specification

Experience natural log of one plus the average age, in years, of the par-
ticipating VCs from their founding until the year prior to the
financing round

Early Stage Focus natural log of one plus the proportion of companies that the
participating VCs invested at an early stage until the year
prior to the financing round

Industry Focus natural log of one plus the proportion of companies funded by
the participating VCs in the same industry as the portfolio
company until the year prior to the financing round.
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Figure 1: Frequency distribution of J.P. Morgan’s partners.
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Figure 2: Distribution of the number of interactions of four top firms with their top 20 collabora-
tors.
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Figure 3: Network graph for connected VCs (1980–84). The upper plot shows the network of all
VCs in communities (1180 in all), and blue, green, and red nodes in the center of the network
are the VCs in the top three largest communities, respectively. The lower plot shows the network
comprised only of the 134 VCs who are members of the 18 communities that have at least five VCs.
The darker nodes in the lower plot show the VCs in the largest community.
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Figure 4: Network graph for connected VCs (1985–89). The upper plot shows the network of all
VCs in communities (1295 in all), and blue, green, and red nodes in the center of the network
are the VCs in the top three largest communities, respectively. The lower plot shows the network
comprised only of the 180 VCs who are members of the 18 communities that have at least five
VCs. The darker nodes in the lower plot show the VCs in the largest community. Note the single
satellite community at the bottom of the lower plot. Such a community has low centrality.
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Figure 5: Network graph for connected VCs (1990–94). The upper plot shows the network of
all VCs in communities (953 in all), and blue, green, and red nodes in the center of the network
are the VCs in the top three largest communities, respectively. The lower plot shows the network
comprised only of the 114 VCs who are members of the 14 communities that have at least five VCs.
The darker nodes in the lower plot show the VCs in the largest community. Note the two satellite
communities above the main one in the lower plot. Such communities have low centraity.
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Figure 6: Network graph for connected VCs (1995–99). The upper plot shows the network of all
VCs in communities (2772 in all), and blue, green, and red nodes in the center of the network
are the VCs in the top three largest communities, respectively. The lower plot shows the network
comprised only of the 379 VCs who are members of the 35 communities that have at least five VCs.
The darker nodes in the lower plot show the VCs in the largest community.
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Table 1: Venture Capitalists in our sample. This table provides descriptive statistics of the 1,962
unique U.S.-based VCs in our database over the entire 20-year period, from 1980 to 1999. Data are
from Venture Economics and exclude non-US investments, angel investors, and VC firms focusing
on buyouts. Size is the sum of the capital under management in all funds that were active during
1980-1999. Total investment is the sum of a VC’s investments over this time period. % Deals
Syndicated is the fraction of all rounds that a VC invested in that were syndicated. % early stage
deals is the fraction of a VC’s deals that are in the early stage. Age is defined as the di↵erence in
the year of the VC’s last investment in the sample period and the VC firm’s founding date.

Variables: Mean Median # Observations
# Rounds 47.98 9.00 1,962
# Companies 21.64 7.00 1,962
Size ($ mm) 128.01 17.50 1,552
Total Investment ($ mm) 595.14 110.47 1,945
Investment per round ($ mm) 19.47 10.56 1,945
% Deals Syndicated 73.62 80.90 1,962
% Early Stage Deals 35.95 33.33 1,962
Age 9.59 6.00 1,950
# VC firms per MSA 14.24 3.00 127



Table 2: Sample Communities. This table details venture capitalists that belong to two sample
communities, one each for 1985-1989 and 1990-1994. We chose the communities that had Stanford
University’s VC arm.

Sample community from the period 1985–89:
(1) Technology Venture Investors, (2) Associated Venture Investors
(AKA: AVI Capital), (3) Bryan & Edwards, (4) Pacific Venture Part-
ners, (5) Sequoia Capital, (6) Suez Ventures (FKA: Indosuez Ven-
tures), (7) Partech International, (8) Stanford University, (9) Asset
Management Company Venture Capital, (10) Arthur Rock &
Co., (11) Mohr Davidow Ventures, (12) OSCCO Ventures,
(13) Draper Fisher Jurvetson (FKA: Draper Associates), (14)
MedVenture Associates (AKA: MVA), (15) GT Technology
Fund, (16) New Zealand Insurance, (17) Nippon Investment
& Finance Co Ltd.

Sample community from the period 1990–94:
(1) Mohr Davidow Ventures, (2) Stanford University, (3) Kleiner
Perkins Caufield & Byers, (4) Mayfield Fund, (5) Delphi Ven-
tures, (6) Sequoia Capital, (7) Berkeley International Capital
Corp., (8) W.S. Investments, (9) Avalon Ventures, (10) Tech-
nology Investment Fund, Inc., (11) Frazier Healthcare and
Technology Ventures(FKA Frazier & Co), (12) Vertex Man-
agement Pte, Ltd. (AKA: Vertex Venture Holdings), (13)
Integral Capital Partners, (14) Silicon Graphics, Inc., (15)
Trinity Capital Partners.



Table 3: Stability of community participation. The table provides data on the number of commu-
nity VCs in each 5-year window. The variable “After one (three, five)) year” shows the proportion
of community VCs in a window who continued to be in a community one, three and five years
hence.

Window # Community VCs After 1 year After 3 years After 5 years

1980-1984 134 0.90 0.85 0.77
1981-1985 153 0.96 0.90 0.80
1982-1986 180 0.93 0.80 0.72
1983-1987 177 0.96 0.87 0.77
1984-1988 205 0.87 0.78 0.67
1985-1989 180 0.92 0.83 0.71
1986-1990 169 0.88 0.76 0.69
1987-1991 125 0.88 0.79 0.77
1988-1992 130 0.93 0.78 0.75
1989-1993 111 0.86 0.77 0.71
1990-1994 114 0.89 0.80 0.77
1991-1995 112 0.82 0.80
1992-1996 146 0.93 0.89
1993-1997 173 0.90
1994-1998 246 0.94
1995-1999 379



Table 4: Stability of communities. For every pair of adjacent rolling windows, we generate the
Jaccard similarity index for every community pair, one community from each of the two rolling
windows. The index is defined as the ratio of the size of the intersection set to the size of the
union set. We report a composite measure for each pair of adjacent rolling window, based on the
mean Jaccard similarity index conditional on the index being positive. We compare these composite
measures of communities with those of random communities generated through bootstrapping based
on matching community sizes and number of communities in each 5-year rolling window. The last
column shows the p-values testing the equality of the composite measure for the community and
bootstrapped community. ⇤⇤⇤, ⇤⇤, and ⇤ denote 1%, 5% and 10% significance, respectively.

Window 1 Window 2 Community Bootstrapped p-value
Community

1980-1984 1981-1985 0.188 0.064 0.01⇤⇤⇤

1981-1985 1982-1986 0.175 0.060 0.01⇤⇤⇤

1982-1986 1983-1987 0.182 0.056 0.01⇤⇤⇤

1983-1987 1984-1988 0.217 0.058 0.01⇤⇤⇤

1984-1988 1985-1989 0.141 0.055 0.01⇤⇤⇤

1985-1989 1986-1990 0.177 0.052 0.01⇤⇤⇤

1986-1990 1987-1991 0.155 0.052 0.01⇤⇤⇤

1987-1991 1988-1992 0.155 0.050 0.01⇤⇤⇤

1988-1992 1989-1993 0.252 0.055 0.01⇤⇤⇤

1989-1993 1990-1994 0.123 0.062 0.01⇤⇤⇤

1990-1994 1991-1995 0.246 0.065 0.01⇤⇤⇤

1991-1995 1992-1996 0.143 0.055 0.01⇤⇤⇤

1992-1996 1993-1997 0.128 0.042 0.01⇤⇤⇤

1993-1997 1994-1998 0.135 0.041 0.01⇤⇤⇤

1994-1998 1995-1999 0.109 0.042 0.01⇤⇤⇤



Table 5: Descriptive statistics for 33,924 rounds in 13,541 unique portfolio companies from 1985-
1999. A round is a community round if at least one VC firm participating in it comes from a VC
community. Communities are detected using a walk trap algorithm applied to syndicated deals over
five year windows rolled forward one year at a time. The sample comprises VC deals obtained from
Venture Economics excluding buyouts, angel investments and non-US deals. Industry classifications
are as per Venture Economics. Exit data are obtained by matching with Thomson Financial IPO
and M&A databases.

Variable Total Community Round Not Community Round
Panel A: Counts By Round

# Deals 33,924 15,220 18,704
—Round 1 11,018 3581 7437
—Round 2 6881 3015 3866
—Round 3 4784 2410 2374
Syndicated 14,897 10,056 4841
Early stage 12,118 5472 6646
Geographical Cluster 16,270 9607 6663
Rounds with
—Geographical Cluster VC 19,678 12,140 7538
—Corporate VC 3372 1923 1449
—FI VC 7586 4415 3171

Panel B: Percentage By Venture Economics Industry
—Biotech 6.8 7.3 6.3
—Commu&Media 12.1 13.3 11.1
—Hardware 7.3 9.0 6.0
—Software 19.8 22.7 17.5
—Cons Pdts 7.8 5.3 9.9
—Indus, Energy 5.9 3.4 8.0
—Internet 11.0 11.9 10.3
—Medical 13.7 15.0 12.7
—Others 8.5 4.4 11.9
—Semicond, Electricals 7.0 7.9 6.3

Panel C: Round Statistics
Proceeds ($ million) 38 (13) 48 (21) 29 (9)
# VCs 2.08 (1) 2.89 (2) 1.42 (1)
—in syndicated rounds 3.46 (3) 3.85 (3) 2.64 (2)
—in early stage rounds 1.93 (1) 2.53 (2) 1.43 (1)
—in round 1 1.54 (1) 2.03 (2) 1.31 (1)
—in round 2 2.00 (1) 2.70 (2) 1.45 (1)
—in round 3 2.38 (2) 3.23 (3) 1.52 (1)

PANEL D: Exit
Rounds with
—IPO exits 3828 2071 1757
—M&A exits 8794 4363 4431
—Follow-on funding 23,972 11,903 12,069



Table 6: Time to exit and probability of exit. Specification (1) reports the estimates of a Cox
proportional hazards model. The dependent variable is the number of days from financing to
the earlier of exit or April 30, 2010. Specification (2) reports the estimates of a probit model in
which the dependent variable is 1.0 if there is a successful exit (IPO or merger) within 10 years
of the investment round and 0 otherwise. See Appendix B for a description of the independent
variables. The sample comprises VC deals obtained from Venture Economics excluding buyouts,
angel investments and non-US deals. All specifications include year and industry fixed e↵ects,
which are not reported for brevity. Both the specifications are overall significant at 1%. t-statistics
based on robust standard errors are in parentheses. ⇤⇤⇤, ⇤⇤, and ⇤ denote significance at the 1%,
5% and 10% levels, respectively.

Cox Probit
(1) (2)

Community 1.110 0.068
(3.96)⇤⇤⇤ (3.44)⇤⇤⇤

Early Stage 0.907 -0.047
(-4.63)⇤⇤⇤ (-2.98)⇤⇤⇤

Company Geographical Cluster 1.057 0.033
(2.54)⇤⇤ (2.05)⇤⇤

Corporate VC 1.327 0.193
(8.71)⇤⇤⇤ (7.65)⇤⇤⇤

FI VC 1.078 0.050
(3.02)⇤⇤⇤ (2.70)⇤⇤⇤

Syndicated 1.319 0.219
(11.99)⇤⇤⇤ (12.66)⇤⇤⇤

IPO Rate 1.078 0.071
(1.34) (1.65)⇤

Centrality 1.022 0.019
(1.90)⇤ (2.19)⇤⇤

VC Geographic Cluster 1.044 0.030
(1.75)⇤ (1.68)⇤

Experience 0.985 -0.014
(-1.14) (-1.46)

Early Stage Focus 1.050 0.015
(0.57) (0.25)

Industry Focus 0.910 -0.049
(-1.15) (-0.80)

# Observations 30769 32362



Table 7: Success through next round financing or exit. Specifications (1)-(3) report the estimates
of a Cox proportional hazards model. The dependent variable is the number of days from financing
to the earliest of the next financing round, exit, or April 30, 2010. Specifications (4)-(6) report
the estimates of a probit model in which the dependent variable is 1.0 if there is a successful exit
(IPO or merger) or financing round within 10 years of the investment round and 0 otherwise. See
Appendix B for a description of the independent variables. All specifications include year and
industry fixed e↵ects, which are not reported for brevity. The sample comprises VC deals obtained
from Venture Economics excluding buyouts, angel investments and non-US deals. t-statistics based
on robust standard errors are in parentheses. All specifications are overall significant at the 1%
level. ⇤⇤⇤, ⇤⇤, and ⇤ denote significance at the 1%, 5% and 10% levels, respectively.

Cox Probit
Round1 Round2 Round3 Round1 Round2 Round3

(1) (2) (3) (4) (5) (6)
Community 1.163 1.139 1.058 0.169 0.222 0.113

(4.53)⇤⇤⇤ (3.40)⇤⇤⇤ (1.29) (4.04)⇤⇤⇤ (4.02)⇤⇤⇤ (1.67)⇤

Early Stage 1.332 1.263 1.194 0.261 0.229 0.233
(10.38)⇤⇤⇤ (7.98)⇤⇤⇤ (4.84)⇤⇤⇤ (8.30)⇤⇤⇤ (5.45)⇤⇤⇤ (4.08)⇤⇤⇤

Company Geographical Cluster 1.078 1.002 1.098 0.083 0.046 0.140
(2.68)⇤⇤⇤ (0.08) (2.50)⇤⇤ (2.48)⇤⇤ (1.02) (2.59)⇤⇤⇤

Corporate VC 0.891 0.974 0.992 -0.126 -0.023 0.106
(-2.32)⇤⇤ (-0.58) (-0.17) (-2.06)⇤⇤ (-0.31) (1.24)

FI VC 0.889 0.927 0.908 -0.142 -0.126 -0.067
(-3.64)⇤⇤⇤ (-2.14)⇤⇤ (-2.47)⇤⇤ (-3.78)⇤⇤⇤ (-2.49)⇤⇤ (-1.06)

Syndicated 1.468 1.293 1.384 0.528 0.505 0.581
(13.89)⇤⇤⇤ (7.63)⇤⇤⇤ (7.87)⇤⇤⇤ (14.70)⇤⇤⇤ (10.39)⇤⇤⇤ (9.48)⇤⇤⇤

IPO Rate 1.242 0.766 0.977 -0.098 -0.303 -0.051
(0.86) (-2.90)⇤⇤⇤ (-0.20) (-1.34) (-2.77)⇤⇤⇤ (-0.34)

Centrality 1.027 1.022 1.051 0.019 0.039 0.093
(1.82)⇤ (1.41) (2.72)⇤⇤⇤ (0.92) (1.39) (2.56)⇤⇤⇤

VC Geographical Cluster 1.062 0.974 0.891 0.090 -0.009 -0.098
(2.06)⇤⇤ (-0.74) (-2.67)⇤⇤⇤ (2.66)⇤⇤⇤ (-0.18) (-1.64)⇤

Experience 0.952 0.978 0.944 -0.064 -0.065 -0.045
(-3.32)⇤⇤⇤ (-1.23) (-2.38)⇤⇤ (-3.88)⇤⇤⇤ (-2.73)⇤⇤⇤ (-1.46)

Early Stage Focus 1.386 1.867 2.005 0.183 0.639 0.552
(3.70)⇤⇤⇤ (5.28)⇤⇤⇤ (4.29)⇤⇤⇤ (1.80)⇤ (4.06)⇤⇤⇤ (2.72)⇤⇤⇤

Industry Focus 1.148 0.978 1.003 0.074 -0.007 0.036
(1.53) (-0.19) (0.02) (0.71) (-0.05) (0.18)

# Observations 9471 6218 4320 9867 6522 4563



Table 8: Similarity of Same-Community VCs. The table compares key community characteristics
with those of random communities generated through bootstrapping based on matching commu-
nity sizes and number of communities in each 5-year rolling window. For each community (and
bootstrapped community), we generate the mean and standard deviation of the characteristic. In
Panel A and Panel B, the table presents the average value of these measures across communities
(and random communities). Age uses the number of years between a VC’s last investment in a
5-year window and the founding year of the VC firm. Assets under management (AUM), in ($
million), uses the sum of a VC’s active funds during each 5-year period. Centrality is based on
each VC’s eigenvector centrality determined for each 5-year rolling window. Ownership HHI is the
Herfindahl index based on the di↵erent types of VC ownership in a community. VC State HHI is
the Herfindahl index based on the number of VCs in each state. Industry HHI is the Herfindahl
index based on the amount invested in each industry, while Stage HHI is the Herfindahl index based
on the amount invested in each stage of investment. Company State HHI is the Herfindahl index
based on the amount invested in each state by VCs. The last column shows the p-values testing
the equality of the means of the community and bootstrapped community characteristics. ⇤⇤⇤, ⇤⇤,
and ⇤ denote 1%, 5% and 10% significance, respectively.

Community Bootstrapped p-value
Community

Panel A: Mean
Age 9.51 8.60 0.01⇤⇤⇤

AUM 138.50 82.24 0.01⇤⇤⇤

Centrality 0.09 0.03 0.01⇤⇤⇤

Ownership HHI 0.44 0.43 0.25
VC State HHI, # 0.43 0.20 0.01⇤⇤⇤

Stage HHI 0.34 0.34 0.50
Industry HHI 0.25 0.21 0.01⇤⇤⇤

Company State HHI 0.37 0.27 0.01⇤⇤⇤

Panel B: Standard Deviation
Age 7.78 8.17 0.15
AUM 165.06 131.51 0.05⇤⇤

Centrality 0.09 0.05 0.01⇤⇤⇤

Stage HHI 0.24 0.27 0.01⇤⇤⇤

Industry HHI 0.25 0.31 0.01⇤⇤⇤

Company State HHI 0.50 0.30 0.01⇤⇤⇤


